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accurate measurements when the contacts pads are partially or fully
suspended.
The input mismatch measurements in Fig. 5 show acceptable
mismatch error below—20 dB at all frequencies. As a result of Simple and Efficient Computation of Electromagnetic
the mismatch, the frequency dependence measurements from Fig. 4  Fields in Arbitrarily Shaped Inhomogeneous

have some further uncertainty, but can be neglected because of Dielectric Bodies Using Transpose-Free
the small reflection coefficients. Also, as mentioned earlier,sthe QMR and FFT
measurements were performed with probe tip calibration, including

the parasitics in the probing pads and the underlying silicon. It is C. F. Wang and J. M. Jin

expected that the actual input return loss of the device without the

pads would be even lower. Abstract—A simple and efficient numerical method is presented for

computing electromagnetic fields in three-dimensional (3-D) inhomoge-

V. CONCLUSIONS neous dielectric bodies. The method employs a two-stage discretization
L - . to convert an integro—differential equation into an implicit system of

We presented a novel method for fabricating efficient microwavgear algebraic equations. This discrete system is then solved using a
power sensors in CMOS technology, with an additional low-cost postanspose-free quasi-minimal residual (TFQMR) algorithm, which avoids
process step. The sensors are based on thermocouple measurelfiefgiculation of the multiplication between the transpose of the system
techniques. The devices show excellent linearity characteristics, @?g”x and a vector. The simple multiplication between the system matrix

. . - a vector required in the TFQMR algorithm is calculated efficiently
low return loss up to 20 GHz. The CMOS implementation gives thging only six fast Fourier transforms (FFT's). Numerical results for

advantages of low cost and easy integration with CMOS circuitsirongly inhomogenous and lossy spheres show that the method has a
The future goal is to integrate the devices with sensing and datable convergence behavior and excellent numerical performance.

conversion circuits on the same chip. Index Terms—Electromagnetic field, fast Fourier transform, inhomoge-

neous dielectric bodies, transpose-free quasi-minimal residual algorithm.
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plays an important role in many applications such as nondestructibe following domain integral equation over the object donidin
testing, microwave imaging, scattering control, target identification,
electromagnetic hyperthermia, and magnetic resonance imaging. The
well-known method of moments (MoM) [1]-[3] is one of the popular é(x)
methods for this computation. In this method, an integro—differentighere 1, = w,/eofio and

equation is first formulated in terms of a volumetric equivalent current

that_ accounts for the effect qf t_he permit_tivity a_nd condl_Jctiv_ity of Adx) = 1 / G(x — x' )y (x')D(x' )dx' ®)
an inhomogeneous body. This integro—differential equation is then € Jv

discretized using mostly Galerkin’s procedure. The discretization
results in a matrix equation with a very large number of unknown\év,Ith
whose solution using a direct solver, such as Gaussian elimination
and anL.U decomposition method, is basically impractical because a

direct solver has a memory requirement&fN?) and computational . . . . o . .
complexity of O(V?), where N denotes the number of unknowns To discretize this equation, we place the object in a uniform mesh with
This difficulty can be circumvented by solving the matrix equation ugrid W|d_ths| Of%rh" ' Af“ anlgiAxgbl_n thew, -, m;—,lagdzng-dlre(_:tlonsl,

ing an iterative solver, and in each iteration the required matrix—vectr&Sp‘?ICt'V_e v ¢ ere ﬁre, (tj € _?hJeCt IS mof ce happ(rjoglmjltey ?js
multiplication is evaluated using the fast Fourier transform (FFT) ©© ectlon_o srmr/}a 9”AS: S, celnttz 0 e;c 191 S egote
[4]. In the past, the conjugate gradient (CG) and the biconjugate *"/. N. P __{(" —3)Az, (/ - 5) 2 (P~ 5)Azs} an
gradient (BCG) methods have been employed as such an iteraﬁ\’)@'n each grid the complex permittivity is assumed to be constant

solver, and the resultant methods are often referred to as the CG—MEf Value ear, v p = e(xa,n.p). ,
and BCG-FFT methods [5]-[7]. The use of the so-called CG—FFTTO convert (2) into a matrix equation, we expand the generalized

or BCG-FFT method reduces the memory requiremeri(y) and electric flux density and the electric-contrast vector potential as

D(x)

— (ki + VV)A(x) =E™(x), x € V 2)

e(x) — o
e(x)

X(x) = Gx—x)= exp(—jko|x — x'|) .

dr|x — x'|

computational complexity t&( Niie: N log N), whereN;., denotes 3

the number of CG or BCG iterations. D(x) =y > 4, B (%), xEV (4)
There is a large body of literature on the CG-FFT and BCG-FFT q=11,71,K

methods for a variety of electromagnetics problems and it is not 3 -

our intention to review it here. Instead, we shall focus on those A(x) :Z Z A(I(f)_l, K‘I’(f‘,')_z, x(x), xeV (5)

for 3-D volumetric material problems. The first application of the a=114,J,K

CG-FFT method to such problems can be found in the analysis ) ) )
of the absorption of electromagnetic power by human bodies [3}1€re ¥ (%), ¥ x (%), ¥;7; x(x) are vector volumet-
However, the use of pulse basis functions yielded slow convergedi& rooftop functions inx,-, z»-, and x;-directions, respectively
and poor results when dealing with materials with high dielectridCl-[13]. We then apply the Galerkin's testing formulation to (2)
contrast. Better formulations were later proposed [8]-[14], and md¥td obtain

used mixed-order (linear in one direction and constant in the otk%r ) D(x)

e(x)

2 /qpp) g
two directions) basis functions. Among these, the methods propoged i1, v, #(X): > = ko (T3 n, p (), A(x))
by Zwamborn and van den Berg [10]-[12] and Gan and Chew [13 . (» () inc
are the most accurate for materials with high dielectric contrast. In V-5 N (%), V- AX) = (B3 v p(x), ET(x)) (6)
both methods, one is required to calculate (within each iteratiop). , _ | o 3 where () denotes the inner product of two vector

the multiplication between the transpose of the system matrix anq, @ tions, Substituting (4) and (5) into (6), we obtain the following
vector, in addition to that between the system matrix and a vectQleak form of the domain integral equation:

resulting in at least 12 FFT's (including inverse FFT’s) per iteration.

In this paper, we present an alternative and more efficient methdd %' %) .., . PSS I 1 210 il AR ) ok k]
for computing electromagnetic fields in arbitrarily shaped inhomo- '[A(q) = [()i,,c,(p) %
geneous dielectric bodies. In this method, a transpose-free quasi- " 7.7 K= "M, N, P
minimal residual (TFQMR) algorithm [15] is employed to aVOi%here
the multiplication between the transpose of the system matrix and

a vector, resulting in a much simpler computer implementation. u R e = 6(6;)\1;(,1), o)
Moreover, the number of FFT’s is reduced to only six per iteration.

It is observed that the TFQMR-FFT method yields excellent results 'z)f\f}: ’fw)rjp;lj LK = (\Ilf{}? NP \IIS“} %)
even for highly inhomogeneous dielectric objects. (p,

, ) _ /v . o) 7 ()
Wrr, N, Py 1,0, K =(V ‘I’M,N,Pv Vv ‘I’I,J,K>

inc,(p) __ (p) inc
CMm NP <‘I’M, ~np E )-

Il. FORMULATION
. . . ; ; (q) (a)
Consider the problem of scattering by a lossy inhomogeneoli§e relationship betweerd’ \  and Ay y » can be found by
dielectric object with a complex permittivity substituting (4) and (5) into (3), yielding
O'(X) A(&{ N, P = AV Z GAMfI,NfJ,PfK/YS(?)Jy K(](j{’])‘], K
€(x) = e (x)e0 —j—— @ LK
- or

wheree, denotes the relative permittivity and denotes the electric (49 4 5l

conductivity of the object, which is in a free space having a ) . ' @ (@
permittivity 0. The incident electric field is denoted &"° = = AVDFT ADFT[Gu,~, pl- DFTGT v, pdar v, e}
(Ei", Eire, Bi")T. The scattering problem can be formulated as (8)
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Fig. 1. Magnitude of the total electric field inside a two-layer dielectric - . a
sphere along ther;-, x2-, and x3-axes. The inner layer has a radius 2 10 E
a; = 0.075 m ande;, = 72.0 — y161.779, and the outer layer has a radius
az = 0.15 m andea,, = 7.5 — j8.9877, and the frequency is 100 MHz. The 10741 ]
solid line is from the Mie series solution and the dash—dot line is from the
TFQMR-FFT solution with grids 31x 31 x 31.
—5
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Fig. 3. The relative error versus the number of iterations for different grid
sizes. (a) For the case of the two-layer sphere. (b) For the case of the
three-layer sphere.

(©

TABLE |
COMPUTATION TIME AND STORAGE ON DEC ALPHA
Number of | CPU-time | Computer
Mesh size FFT size unknowns | per iteration | storage
15 x 15 x 15 32 x 32 x 32 10800 0.74 sec 2.2 Mb
31 x 31 x31 64 x 64 x 64 92256 9.5 sec 16 Mb
63 x 63 x 63 | 128 x 128 x 128 762048 152 sec 105 Mb

where AV = Az;AxsAxs. Substituting (8) into (7), we obtain
a system of linear algebraic equations, which can be symbolically

written as

Ld = e

9)

The formulation described above was first proposed by Zwamborn
and van den Berg [10]-[12]. Its major advantage is the simplicity in
treating the singularity of the integrals in (2) and, more important, in

calculating the right-hand side of (7), which is accomplished through

Fig. 2. The magnitude of the total electric field inside a three-layer dielectiwwo stages. The first stage is to calcula{é?,). ~. p from (8) and
sphere along ther;-, w2-, and z3-axes. The inner layer has a radiusthe second stage is to substitute it into (7). Note that the matrices

a1 = 0.3333)\g ande,» = 1.2, the middle layer has a radius = 0.6667\g
and es, = 2.0, and the outer layer has a radius = \g andez, = 2.4.

implied in (7) are sparse matrices and their product with a vector can

The solid line is from the Mie series solution and the dash—dot line is froR€ evaluated witl)(N7) operations, wheré'r denotes the number

the TFQMR-FFT solution with grids 3k 31 x 31.

of unknowns. Although the matrix implied in (8) is a dense matrix,
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Fig. 4. SAR (watt/kilogram) in the axial, sagittal, and coronal slices at 64 MHz for a uniform plane-wave excitation polarized:indihection and
propagating in the—x3-direction using 63x 63 x 63 grids.

the computation of its product with a vector can be evaluated witnd does not guarantee convergence. The second method is the BCG

O(NrlogNr) operations with the aid of the FFT. stabilized (BCGSTAB) algorithm [18], which uses local steepest
descent steps to obtain a more smoothly convergent process. While
IIl. TFQMR—-FFT ITERATIVE ALGORITHM this algorithm seems to work well in many cases, it still exhibits

Once (9) is formulated, its solution yields a numerical solutique irregular convergence behavior for some difficult problems. Also,
to the original problem. However, since the number of unknowr§ convergence is considerably slower than the CGS algorithm. T_he
in (9) is usually very large, its solution, using a direct solver suciird method is the transpose-free QMR (TFQMR) method [15]. This
as Gaussian elimination afd’ decomposition method, is basically/90rithm can be implemented easily by changing only a few lines

impractical because a direct solver has a memory requirementirblthe standard CGS algorithm. However, unlike the CGS algorithm,

O(N2) and computational complexity @( N3). This difficulty can the iterations of the TFQMR algorithm are characterized by a quasi-

be circumvented by solving (9) by using an iterative solver, and [Rinimization of the residual norm. This leads to smooth convergence
i h a convergence rate similar to the CGS algorithm. The TFQMR

each iteration the required matrix-by-vector product is evaluated usiW' c - . A
the FFT, as pointed out earlier. In the past, the CG and BCG meth orithm can be considered as a new version of the CGS algorithm

have been employed as such an iterative solver, and the resut¥fich “auasi-minimizes” the residual in the space spanned by the
methods are referred to as the CG—FFT and BCG—FET methd@Stors generated by the CGS iterations. Recently, a QMR variant

[5]-[14]. The use of these methods reduces the memory requirem@ht"® BCGSTAB algorithm (QMRBCGSTAB) [19] is proposed. Our
to O(Ny) and computational complexity t6)(Niwe: Ny log Ny), experimental calculation shows, however, that its convergence can

iter

where V... denotes the number of CG or BCG iterations. HoweveP,e slower than the TFQMR for our problems. After a comprehensive

1ter . . . .

both CG-FFT and BCG—FFT algorithms require the calculation of¢@mparison, the TFQMR algorithm is chosen for this paper.
matrix-by-vector product with the conjugate transpose of the system! "¢ TFQMR algorithm for solving (9) can be found in [15] and
matrix, which in most cases is not an easy task since the systkfl- From the algorithm, it is observed that each odd iteration
matrix in (9) is nonsymmetric. Furthermore, the CG method has'gauires _two matnx_-by-vector products and each even iteration does
problem of slow convergence, although it converges monotonicalfjot reuire a matrix-by-vector product. Therefore, on average, the
and the BCG method does not guarantee convergence, althoug RRMR algorithm requires only one matrix-by-vector product, which
usually converges quickly. Although this problem can be alleviatd@h Pe calculated using six FFT's.
by using the QMR method [16], which converges monotonically with
a convergence rate similar to the BCG method, the QMR still requires IV. NUMERICAL RESULTS
the calculation of a matrix-by-vector product with the conjugate To demonstrate the accuracy of the TFQMR-FFT algorithm, we
transpose of the system matrix. Here, we consider other alternativasalyze the scattering of a plane wave from two layered dielectric

There are four algorithms that do not require the calculation spheres and compare the results with the Mie series solution. In all
the transpose of the system matrix. The first one is the CG-squasathulations, we assume that the incident plane wave is polarized
(CGS) algorithm [17], which is the transpose-free variant of the BC@® the x;-direction and propagates in thes-direction and the
algorithm. However, like the BCG method, it also exhibits a rathdrackground is the free space. The amplitude of the incident electric
irregular convergence behavior with wild oscillations in residual norfiield is 1 V/m. The first sphere has two layers and the second sphere
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Fig. 5. SAR (watt/kilogram) in the axial, sagittal, and coronal slices at 256 MHz for a uniform plane wave excitation polarized: irdihection and
propagating in the—a3-direction using 63x 63 x 63 grids.

has three layers. Fig. 1 shows the field in the two-layer dielectric 10° i i

sphere, and Fig. 2 gives the results for the three-layer sphere. The b - -64 MHz

convergence criterion for these results is = ||r,.||/||ro]] < 1072, — 256 MH=z

Excellent agreement is observed between the exact solution and the

numerical results obtained using 3 31 x 31 grids. The relative

error versus the number of iterations is given in Fig. 3 for both cases

for different grid sizes. As can be seen, the TFQMR—-FFT algorithm

exhibits a stable convergence behavior. The computation time needed 8

to evaluate one iteration, the total number of unknowns, and the

required computer storage are given in Table I. 1077}
To demonstrate the efficiency of the algorithm, we consider again

the problem illustrated in Fig. 1. As can be seen in Fig. 3(a), using

the TFQMR-FFT algorithm with 3% 31 x 31 grids, it takes 112

iterations to reducess below 1072, Since each iteration requires six . ;

FFT's, the total number of FFT's is 672. This problem was also ° 50 mbo0 S0 o200

treated using the CG-FFT algorithm in [10]-[12] and the BCG-. ) ) . )

FET algortim in [13]. For the same grid size and accuracy, Ui & The realie eor ersss the mumber of teajons o deren

CG-FFT algorithm takes about 360 iterations and, since each iteratigg case of 256 MHz.

requires 12 FFT's, the total number of FFT’s is about 4320, which is

6.4 times that of the TFQMR-FFT algorithm. When the BCG—-FFT

algorithm is used, it takes only 54 iterations and, since each iteratigRd the frequencies considered are 64 and 256 MHz. The results

requires 18 FFT's, the total number of FFT’s is 972, which is 1.8'€ presented |£1 the form of spatial absorptlon_rate _(SAR) defined

times that of the TFQMR—FFT algorithm. Furthermore, the BCGS SAR= o|E|"/2p, where denotes the density. Figs. 4 and 5

FFT algorithm has an irregular convergence behavior and does ABPW the SAR in the axial, sagittal, and coronal planes at the two
guarantee convergence. frequencies. Fig. 6 shows the relative error versus the number of

Finally, to demonstrate the capability of the TEQMR-FFT algoi;era.ti.ons for the two frequencies. Aga.in, the TFQMR-FFT algorithm
rithm to treat a strongly inhomogeneous dielectric object, we consio@fh'b'ts a stable convergence behavior.
the plane wave scattering by a human head. The construction of
the electromagnetic model of the head is discussed in [21] and the V. CONCLUSION
material property of the tissues of the head is given in [22]. The This paper has presented a TFQMR-FFT algorithm for computing
incident wave propagates in thexs-direction (from top) and the electromagnetic fields in a 3-D arbitrarily shaped inhomogeneous
incident electric field is polarized in the, -direction (from the left- dielectric body. It is observed that this algorithm yields excellent
to-right ear). The incident electric field has an amplitude of 1 V/mesults and exhibits a very stable convergence behavior. Because of

_a =
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of the multiplication between the transpose of the system matrix “A quasiminimal residual variant of the BI-CGSTAB algorithm for
and a vector, which is required in both the CG—FFT and BCG-FFT nonsymmetric systems3IAM J. Sci. Stat. Computpl. 15, no. 2, pp.

methods. As a result, the programming complexity is greatly reduce[go]

338-347, 1994.
Y. Saad lterative Method for Sparse Linear System&lew York: PWS,

Furthermore, since on average the TFQMR method requires only 1995,
one matrix-by-vector multiplication, which can be evaluated usini@l1] P.J. Dimbylow and S. M. Mann, “SAR calculations in an anatomically
six FFT's, the TFQMR-FFT algorithm is more efficient than the realistic model of the head for mobile communication transceivers at

currently available CG-FFT and BCG—FFT methods.
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