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Fig. 5. Measured input return loss of the device.

accurate measurements when the contacts pads are partially or fully
suspended.

The input mismatch measurements in Fig. 5 show acceptable
mismatch error below�20 dB at all frequencies. As a result of
the mismatch, the frequency dependence measurements from Fig. 4
have some further uncertainty, but can be neglected because of
the small reflection coefficients. Also, as mentioned earlier, thes11

measurements were performed with probe tip calibration, including
the parasitics in the probing pads and the underlying silicon. It is
expected that the actual input return loss of the device without the
pads would be even lower.

V. CONCLUSIONS

We presented a novel method for fabricating efficient microwave
power sensors in CMOS technology, with an additional low-cost post-
process step. The sensors are based on thermocouple measurement
techniques. The devices show excellent linearity characteristics, and
low return loss up to 20 GHz. The CMOS implementation gives the
advantages of low cost and easy integration with CMOS circuits.
The future goal is to integrate the devices with sensing and data
conversion circuits on the same chip.
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Simple and Efficient Computation of Electromagnetic
Fields in Arbitrarily Shaped Inhomogeneous

Dielectric Bodies Using Transpose-Free
QMR and FFT

C. F. Wang and J. M. Jin

Abstract—A simple and efficient numerical method is presented for
computing electromagnetic fields in three-dimensional (3-D) inhomoge-
neous dielectric bodies. The method employs a two-stage discretization
to convert an integro–differential equation into an implicit system of
linear algebraic equations. This discrete system is then solved using a
transpose-free quasi-minimal residual (TFQMR) algorithm, which avoids
the calculation of the multiplication between the transpose of the system
matrix and a vector. The simple multiplication between the system matrix
and a vector required in the TFQMR algorithm is calculated efficiently
using only six fast Fourier transforms (FFT’s). Numerical results for
strongly inhomogenous and lossy spheres show that the method has a
stable convergence behavior and excellent numerical performance.

Index Terms—Electromagnetic field, fast Fourier transform, inhomoge-
neous dielectric bodies, transpose-free quasi-minimal residual algorithm.

I. INTRODUCTION

Efficient computation of electromagnetic fields in arbitrarily shaped
inhomogeneous dielectric bodies in a three-dimensional (3-D) space
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plays an important role in many applications such as nondestructive
testing, microwave imaging, scattering control, target identification,
electromagnetic hyperthermia, and magnetic resonance imaging. The
well-known method of moments (MoM) [1]–[3] is one of the popular
methods for this computation. In this method, an integro–differential
equation is first formulated in terms of a volumetric equivalent current
that accounts for the effect of the permittivity and conductivity of
an inhomogeneous body. This integro–differential equation is then
discretized using mostly Galerkin’s procedure. The discretization
results in a matrix equation with a very large number of unknowns,
whose solution using a direct solver, such as Gaussian elimination
and anLU decomposition method, is basically impractical because a
direct solver has a memory requirement ofO(N2

) and computational
complexity ofO(N3

), whereN denotes the number of unknowns.
This difficulty can be circumvented by solving the matrix equation us-
ing an iterative solver, and in each iteration the required matrix–vector
multiplication is evaluated using the fast Fourier transform (FFT)
[4]. In the past, the conjugate gradient (CG) and the biconjugate
gradient (BCG) methods have been employed as such an iterative
solver, and the resultant methods are often referred to as the CG–FFT
and BCG–FFT methods [5]–[7]. The use of the so-called CG–FFT
or BCG–FFT method reduces the memory requirement toO(N) and
computational complexity toO(NiterN log N), whereNiter denotes
the number of CG or BCG iterations.

There is a large body of literature on the CG–FFT and BCG–FFT
methods for a variety of electromagnetics problems and it is not
our intention to review it here. Instead, we shall focus on those
for 3-D volumetric material problems. The first application of the
CG–FFT method to such problems can be found in the analysis
of the absorption of electromagnetic power by human bodies [5].
However, the use of pulse basis functions yielded slow convergence
and poor results when dealing with materials with high dielectric
contrast. Better formulations were later proposed [8]–[14], and most
used mixed-order (linear in one direction and constant in the other
two directions) basis functions. Among these, the methods proposed
by Zwamborn and van den Berg [10]–[12] and Gan and Chew [13]
are the most accurate for materials with high dielectric contrast. In
both methods, one is required to calculate (within each iteration)
the multiplication between the transpose of the system matrix and a
vector, in addition to that between the system matrix and a vector,
resulting in at least 12 FFT’s (including inverse FFT’s) per iteration.

In this paper, we present an alternative and more efficient method
for computing electromagnetic fields in arbitrarily shaped inhomo-
geneous dielectric bodies. In this method, a transpose-free quasi-
minimal residual (TFQMR) algorithm [15] is employed to avoid
the multiplication between the transpose of the system matrix and
a vector, resulting in a much simpler computer implementation.
Moreover, the number of FFT’s is reduced to only six per iteration.
It is observed that the TFQMR-FFT method yields excellent results
even for highly inhomogeneous dielectric objects.

II. FORMULATION

Consider the problem of scattering by a lossy inhomogeneous
dielectric object with a complex permittivity

�(x) = �r(x)�0 � j
�(x)

!
(1)

where�r denotes the relative permittivity and� denotes the electric
conductivity of the object, which is in a free space having a
permittivity �0. The incident electric field is denoted asEinc

=

(Einc

1 ; Einc

2 ; Einc

3 )
T . The scattering problem can be formulated as

the following domain integral equation over the object domainV:

D(x)

�(x)
� (k

2

0 +rr�)A(x) = E
inc

(x); x 2 V (2)

wherek0 = !
p
�0�0 and

A(x) =
1

�0 V

G(x� x0)�(x0)D(x
0

)dx
0 (3)

with
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4�jx � x0j :

To discretize this equation, we place the object in a uniform mesh with
grid widths of�x1, �x2, and�x3 in thex1-, x2-, andx3-directions,
respectively. Therefore, the object is modeled approximately as
a collection of small grids. The center of each grid is denoted
as xM;N;P = M � 1

2
�x1; N � 1

2
�x2; P � 1

2
�x3 and

within each grid the complex permittivity is assumed to be constant
with value �M;N;P = �(xM;N;P ).

To convert (2) into a matrix equation, we expand the generalized
electric flux density and the electric-contrast vector potential as
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3
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I; J;K(x), 	(3)

I; J;K(x) are vector volumet-
ric rooftop functions inx1-, x2-, and x3-directions, respectively
[10]–[13]. We then apply the Galerkin’s testing formulation to (2)
and obtain
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for p = 1, 2, 3, whereh�i denotes the inner product of two vector
functions. Substituting (4) and (5) into (6), we obtain the following
weak form of the domain integral equation:
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The relationship betweend(q)M;N;P and A(q)

M;N;P can be found by
substituting (4) and (5) into (3), yielding
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(a) (b)

(c)

Fig. 1. Magnitude of the total electric field inside a two-layer dielectric
sphere along thex1-, x2-, and x3-axes. The inner layer has a radius
a1 = 0:075 m and�1r = 72:0� j161:779, and the outer layer has a radius
a2 = 0:15 m and�2r = 7:5� j8:9877, and the frequency is 100 MHz. The
solid line is from the Mie series solution and the dash–dot line is from the
TFQMR–FFT solution with grids 31� 31 � 31.

(a) (b)

(c)

Fig. 2. The magnitude of the total electric field inside a three-layer dielectric
sphere along thex1-, x2-, and x3-axes. The inner layer has a radius
a1 = 0:3333�0 and�1r = 1:2, the middle layer has a radiusa2 = 0:6667�0
and �2r = 2:0, and the outer layer has a radiusa3 = �0 and �3r = 2:4.
The solid line is from the Mie series solution and the dash–dot line is from
the TFQMR-FFT solution with grids 31� 31 � 31.

(a)

(b)

Fig. 3. The relative error versus the number of iterations for different grid
sizes. (a) For the case of the two-layer sphere. (b) For the case of the
three-layer sphere.

TABLE I
COMPUTATION TIME AND STORAGE ON DEC ALPHA

where�V = �x1�x2�x3. Substituting (8) into (7), we obtain
a system of linear algebraic equations, which can be symbolically
written as

Ld = e
inc
: (9)

The formulation described above was first proposed by Zwamborn
and van den Berg [10]–[12]. Its major advantage is the simplicity in
treating the singularity of the integrals in (2) and, more important, in
calculating the right-hand side of (7), which is accomplished through
two stages. The first stage is to calculateA(q)

M;N;P from (8) and
the second stage is to substitute it into (7). Note that the matrices
implied in (7) are sparse matrices and their product with a vector can
be evaluated withO(NT ) operations, whereNT denotes the number
of unknowns. Although the matrix implied in (8) is a dense matrix,
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Fig. 4. SAR (watt/kilogram) in the axial, sagittal, and coronal slices at 64 MHz for a uniform plane-wave excitation polarized in thex1-direction and
propagating in the�x3-direction using 63� 63 � 63 grids.

the computation of its product with a vector can be evaluated with
O(NT logNT ) operations with the aid of the FFT.

III. TFQMR–FFT ITERATIVE ALGORITHM

Once (9) is formulated, its solution yields a numerical solution
to the original problem. However, since the number of unknowns
in (9) is usually very large, its solution, using a direct solver such
as Gaussian elimination andLU decomposition method, is basically
impractical because a direct solver has a memory requirement of
O(N2

T ) and computational complexity ofO(N3

T ). This difficulty can
be circumvented by solving (9) by using an iterative solver, and in
each iteration the required matrix-by-vector product is evaluated using
the FFT, as pointed out earlier. In the past, the CG and BCG methods
have been employed as such an iterative solver, and the resultant
methods are referred to as the CG–FFT and BCG–FFT methods
[5]–[14]. The use of these methods reduces the memory requirement
to O(NT ) and computational complexity toO(NiterNT logNT ),
whereNiter denotes the number of CG or BCG iterations. However,
both CG–FFT and BCG–FFT algorithms require the calculation of a
matrix-by-vector product with the conjugate transpose of the system
matrix, which in most cases is not an easy task since the system
matrix in (9) is nonsymmetric. Furthermore, the CG method has a
problem of slow convergence, although it converges monotonically,
and the BCG method does not guarantee convergence, although it
usually converges quickly. Although this problem can be alleviated
by using the QMR method [16], which converges monotonically with
a convergence rate similar to the BCG method, the QMR still requires
the calculation of a matrix-by-vector product with the conjugate
transpose of the system matrix. Here, we consider other alternatives.

There are four algorithms that do not require the calculation of
the transpose of the system matrix. The first one is the CG-squared
(CGS) algorithm [17], which is the transpose-free variant of the BCG
algorithm. However, like the BCG method, it also exhibits a rather
irregular convergence behavior with wild oscillations in residual norm

and does not guarantee convergence. The second method is the BCG
stabilized (BCGSTAB) algorithm [18], which uses local steepest
descent steps to obtain a more smoothly convergent process. While
this algorithm seems to work well in many cases, it still exhibits
the irregular convergence behavior for some difficult problems. Also,
its convergence is considerably slower than the CGS algorithm. The
third method is the transpose-free QMR (TFQMR) method [15]. This
algorithm can be implemented easily by changing only a few lines
in the standard CGS algorithm. However, unlike the CGS algorithm,
the iterations of the TFQMR algorithm are characterized by a quasi-
minimization of the residual norm. This leads to smooth convergence
with a convergence rate similar to the CGS algorithm. The TFQMR
algorithm can be considered as a new version of the CGS algorithm
which “quasi-minimizes” the residual in the space spanned by the
vectors generated by the CGS iterations. Recently, a QMR variant
of the BCGSTAB algorithm (QMRBCGSTAB) [19] is proposed. Our
experimental calculation shows, however, that its convergence can
be slower than the TFQMR for our problems. After a comprehensive
comparison, the TFQMR algorithm is chosen for this paper.

The TFQMR algorithm for solving (9) can be found in [15] and
[20]. From the algorithm, it is observed that each odd iteration
requires two matrix-by-vector products and each even iteration does
not require a matrix-by-vector product. Therefore, on average, the
TFQMR algorithm requires only one matrix-by-vector product, which
can be calculated using six FFT’s.

IV. NUMERICAL RESULTS

To demonstrate the accuracy of the TFQMR-FFT algorithm, we
analyze the scattering of a plane wave from two layered dielectric
spheres and compare the results with the Mie series solution. In all
simulations, we assume that the incident plane wave is polarized
in the x1-direction and propagates in thex3-direction and the
background is the free space. The amplitude of the incident electric
field is 1 V/m. The first sphere has two layers and the second sphere
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Fig. 5. SAR (watt/kilogram) in the axial, sagittal, and coronal slices at 256 MHz for a uniform plane wave excitation polarized in thex1-direction and
propagating in the�x3-direction using 63� 63 � 63 grids.

has three layers. Fig. 1 shows the field in the two-layer dielectric
sphere, and Fig. 2 gives the results for the three-layer sphere. The
convergence criterion for these results isrss = krmk=kr0k < 10

�3.
Excellent agreement is observed between the exact solution and the
numerical results obtained using 31� 31 � 31 grids. The relative
error versus the number of iterations is given in Fig. 3 for both cases
for different grid sizes. As can be seen, the TFQMR–FFT algorithm
exhibits a stable convergence behavior. The computation time needed
to evaluate one iteration, the total number of unknowns, and the
required computer storage are given in Table I.

To demonstrate the efficiency of the algorithm, we consider again
the problem illustrated in Fig. 1. As can be seen in Fig. 3(a), using
the TFQMR–FFT algorithm with 31� 31 � 31 grids, it takes 112
iterations to reducerss below 10�3. Since each iteration requires six
FFT’s, the total number of FFT’s is 672. This problem was also
treated using the CG–FFT algorithm in [10]–[12] and the BCG-
FFT algorithm in [13]. For the same grid size and accuracy, the
CG–FFT algorithm takes about 360 iterations and, since each iteration
requires 12 FFT’s, the total number of FFT’s is about 4320, which is
6.4 times that of the TFQMR–FFT algorithm. When the BCG–FFT
algorithm is used, it takes only 54 iterations and, since each iteration
requires 18 FFT’s, the total number of FFT’s is 972, which is 1.4
times that of the TFQMR–FFT algorithm. Furthermore, the BCG-
FFT algorithm has an irregular convergence behavior and does not
guarantee convergence.

Finally, to demonstrate the capability of the TFQMR–FFT algo-
rithm to treat a strongly inhomogeneous dielectric object, we consider
the plane wave scattering by a human head. The construction of
the electromagnetic model of the head is discussed in [21] and the
material property of the tissues of the head is given in [22]. The
incident wave propagates in the�x3-direction (from top) and the
incident electric field is polarized in thex1-direction (from the left-
to-right ear). The incident electric field has an amplitude of 1 V/m

Fig. 6. The relative error versus the number of iterations for different
frequencies with 63� 63 � 63 grids. (a) For the case of 64 MHz. (b) For
the case of 256 MHz.

and the frequencies considered are 64 and 256 MHz. The results
are presented in the form of spatial absorption rate (SAR) defined
as SAR= �jEj2=2�, where� denotes the density. Figs. 4 and 5
show the SAR in the axial, sagittal, and coronal planes at the two
frequencies. Fig. 6 shows the relative error versus the number of
iterations for the two frequencies. Again, the TFQMR–FFT algorithm
exhibits a stable convergence behavior.

V. CONCLUSION

This paper has presented a TFQMR–FFT algorithm for computing
electromagnetic fields in a 3-D arbitrarily shaped inhomogeneous
dielectric body. It is observed that this algorithm yields excellent
results and exhibits a very stable convergence behavior. Because of
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the use of the TFQMR method, the algorithm avoids the computation
of the multiplication between the transpose of the system matrix
and a vector, which is required in both the CG–FFT and BCG–FFT
methods. As a result, the programming complexity is greatly reduced.
Furthermore, since on average the TFQMR method requires only
one matrix-by-vector multiplication, which can be evaluated using
six FFT’s, the TFQMR–FFT algorithm is more efficient than the
currently available CG–FFT and BCG–FFT methods.
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Two-Dimensional Wavelet-Analysis of a Microstrip Open

Gerald Oberschmidt, Karsten Bubke, and Arne F. Jacob

Abstract—Simple two-dimensional (2-D) wavelet systems are used in
a moment method to analyze a microstrip discontinuity. This allows one
to efficiently compress the impedance matrix. The achievable sparsity is
discussed for different resolution depths where up to 85% was obtained
for an error below 1%.

Index Terms—Matrix compression, numerical analysis, planar mi-
crowave circuits, wavelets.

I. INTRODUCTION

The spectral-domain moment method is known to be a very
effective tool for the analysis of planar microwave circuits [1].
It leads, however, to densely populated impedance matrices. For
large or complex circuit configurations, this can become a serious
problem because of limited computer resources. This drawback can
be overcome by discretizing with wavelet bases because they allow
compression of the impedance matrices [2]–[5].

Wavelet bases have recently been used to effectively analyze two-
dimensional (2-D) structures [3]. Here, the wavelet scheme has been
extended to two dimensions, similar to [6].

After briefly reviewing the method and the concept of wavelets, we
present the construction of tensor wavelets in two dimensions with
arbitrary resolution levels in both directions. Details about the imple-
mentation of the program are followed by a discussion of the results.

II. M ETHOD

To analyze an open microstrip line, the electric-field integral
equation (EFIE) is solved in the spectral domain [1]. Since for
electrically narrow strips the transverse current can be neglected [3],
the EFIE reduces to

~Ex(�; �; h) = ~Gxx(�; �) ~Jx(�; �; h) (1)

for the longitudinal components of the electric field and current
density. Here,� and � are thex- and y-space frequencies, re-
spectively, andh is the height of the substrate. The tilde denotes
the Fourier transform. Definitions and notations, especially for the
Green’s function~Gxx, are as in [1].
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